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Abstract

Grafting has been demonstrated to significantly enhance the salt tolerance of crops. However, breeding efforts to develop enhanced
graft combinations are hindered by knowledge-gaps as to how rootstocks mediate scion-response to salt stress. We grafted the
scion of cultivated M82 onto rootstocks of 254 tomato accessions and explored the morphological and metabolic responses of
grafts under saline conditions (EC = 20 dS m−1) as compared to self-grafted M82 (SG-M82). Correlation analysis and Least Absolute
Shrinkage and Selection Operator were performed to address the association between morphological diversification and metabolic
perturbation. We demonstrate that grafting the same variety onto different rootstocks resulted in scion phenotypic heterogeneity and
emphasized the productivity efficiency of M82 irrespective of the rootstock. Spectrophotometric analysis to test lipid oxidation showed
largest variability of malondialdehyde (MDA) equivalents across the population, while the least responsive trait was the ratio of fruit
fresh weight to total fresh weight (FFW/TFW). Generally, grafts showed greater values for the traits measured than SG-M82, except
for branch number and wild race-originated rootstocks; the latter were associated with smaller scion growth parameters. Highly
responsive and correlated metabolites were identified across the graft collection including malate, citrate, and aspartate, and their
variance was partly related to rootstock origin. A group of six metabolites that consistently characterized exceptional graft response
was observed, consisting of sorbose, galactose, sucrose, fructose, myo-inositol, and proline. The correlation analysis and predictive
modelling, integrating phenotype- and leaf metabolite data, suggest a potential predictive relation between a set of leaf metabolites
and yield-related traits.

Introduction
Salt stress is one of the most important abiotic stresses
hampering plant growth and affecting crop production
and affects about 20% of irrigated land worldwide
[1]. Moderate salinity (EC: 4–8 dS m−1) can reduce
average yields by 50–80% and subsequently result in
a yield gap for all major glycophytic crops [2], thereby
leading to unsustainable growth rates of agricultural
demand. The deleterious effects of soil salinity on plant
growth mainly result from osmotic stress, ionic toxicity,
nutritional imbalance, and oxidative damage [3]. Plants
have evolved different strategies for protection against
salinity including synthesis of compatible osmolytes, ion
compartmentation, enhancement of enzymatic or non-
enzymatic antioxidant systems, and changes in hormone
levels and hormone-mediated signalling [4–7].

Considering that soil salinity poses a significant threat
to agriculture, improving salt tolerance of crops and
identifying the biochemical and molecular basis of salt
tolerance are high-priority goals of scientific research
and agricultural practices [4, 8, 9]. However, the complex
genetic and physiological-based response to salt stress
leave important unresolved questions [2, 10, 11]. Among
the strategies to counter the detrimental effects of soil
salinity on crops, grafting has shown important results
in several species [12–15].

Grafting establishes a vascular continuity in a natural
or deliberate fusion of plant parts and results in the
genetically composite organism functioning as a sin-
gle plant [16]. Currently, grafting is used in a number
of crop species such as cucumber, watermelon, citrus,
and various Solanaceae [17–22]. Grafting can boost plant
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growth, control wilt caused by pathogens, reduce viral,
fungal, and bacterial infection, strengthen tolerance to
thermal or saline stress, and increase nutrient and min-
eral uptake to the shoot [23]. It has been demonstrated
that rootstocks can induce scion tolerance to salinity by
comprehensively improving shoot performance (e.g. dry
matter accumulation, leaf area, leaf water potential, and
stomatal conductivity) [24–27].

Grafting in tomato has been mostly investigated in
small-scale experiments, indicating the morphological
[28–30], physiological [31, 32], and metabolic alterations
[33] in the scion mediated by rootstocks. Gerieneisen
et al. [34] summarised 159 publications using grafted
tomatoes and found that 35% (294 of 684) of the
heterografted plants produced significantly higher
yields than the corresponding controls. The cultivar
cv. Maxifort was the most commonly tested rootstock
among 202 rootstocks in 1023 experimental treatments,
comprising different grafts, locations, and growing
seasons. By grafting the scion onto different rootstocks,
salt tolerance in scion could be altered and improved
[35], leading to enhanced plant growth [36], fruit yield,
and fruit quality [37]. Improvement in salt tolerance
manifested either as plant growth [38] or physiological
aspects [39] of grafted tomatoes was due to interaction
of the scion with the rootstock [40, 41]. However, to
the best of our knowledge, no comprehensive inves-
tigation has been conducted regarding the metabolic
response in plant leaves under sub-optimal conditions
mediated by rootstock biodiversity and how rootstock-
mediated leaf metabolism is associated with plant yield
traits.

Metabolomics-assisted breeding has been proposed
to accelerate breeding processes [42]. The potential
application of metabolic markers has been suggested
by robust, significant correlations between metabolites
and at least one whole-plant phenotypic trait in tomato
[43]. In tomato seeds, seed germination was found to
be negatively correlated to amino acids such as proline,
methionine, leucine, and lysine [44]. The redundancy
of metabolic markers makes it difficult to use them as
individual features. A more robust approach will be the
production of metabolic signatures, whereby a group
of metabolic features is found that is predictive of a
yield/quality related trait [45]. In another report, the
predictive ability, calculated as the Pearson’s correlation
coefficient between the observed and predicted value,
can reach as high as 0.977 in predicting agronomic
traits using metabolites [46]. Taken together, metabolic
prediction of phenotypic traits has being a approach
of great potential addressing the association between
metabolites and polygenic traits [47, 48].

In this study, we explored the effect of a collection of
254 tomato rootstock accessions on the morphological
and metabolic traits of cv. M82 plants under saline soil
conditions. We then tested predictive models to link the
metabolic alteration mediated by the rootstocks in the
plant leaves with its yield-related traits.

Results
Tomato grafts onto different rootstocks exhibit a
broad spectrum of phenotypes under saline
conditions
The log2 FCs of each graft against SG-M82 were calcu-
lated to visualize the effect of rootstocks on scion perfor-
mance under saline (NaCl) irrigation; thus, positive and
negative values show the increases and decrease over
control, respectively (Fig. 1). Heterogeneity in morpholog-
ical traits and in the relative content of malondialdehyde
(MDA) as an indicator of oxidative damage in tomato
under salt stress [49, 50] was observed as a result of the
rootstock-mediated response of M82 (Fig. 1a). To evaluate
the extent of variation for each trait, a coefficient of
variation (CV) was calculated as the ratio of standard
deviation over the mean of each trait across the entire
grafted population (Fig. S2). Hence, the higher the CV,
the greater the variability of a given trait mediated by
a rootstock. We observed that MDA content had the
highest CV value (CV = 0.58), showing an FC range of
0.30 to 5.21 compared to SG-M82, whereas the FFW/TFW
ratio and harvest index were the traits with the lowest
CV (CVs = 0.07 and 0.11, respectively) across the entire
population, presenting narrow FC range of 0.63 to 1.08
(Fig. 1a). These data suggest relative resilience of shoot
and yield-related traits to grafting.

The diagram (Fig. 1b), in which the population is
divided into 20 bins for each trait, shows the effects
of rootstocks on morphological traits. Almost all grafts,
98.4% (250 of 254), generated fewer branches (BN)
than SG-M82 (gold bin). When considering the overall
performance of the plants, we classified the plants
according to MDA content and morphological traits. As
such, more than 200 grafts showed better performance
(i.e. greater values for morphological traits and lower
values for MDA content) than SG-M82, accumulated
higher PDW (n = 215), TDW (n = 208), and longer MIL
(n = 209), as indicated by the skew relative to SG-M82.
Next, grafts were separated into 14 bins corresponding
to 14 measured traits including MDA (Fig. S3). Fig. S3a
shows the frequency of grafted lines that exhibited
better performance than SG-M82 for each of the 14
traits. For instance, 19 grafts displayed comprehensive
improvements in 12 out of 14 plant growth traits under
saline conditions compared to SG-M82. None of the 254
grafts exhibited better performance than SG-M82 over
all 13 or 14 traits. The 254 tomato accessions used as
rootstocks for plant grafting were from five different
origins, occupying different proportions in the grafted
population (Fig. S3b). The proportions of rootstock origin
in each bin were similar to that in the grafted population,
except for the 17 wild species, which were mainly
associated with smaller plant growth parameters, such
as lower FFW and TFW (Fig. S4). This consistent pattern
indicates that domestication led to relative homogeneity
in supporting scion growth under saline conditions.

Correlation analysis generated a cluster of sig-
nificant correlations (r ≥ 0.42, p < 0.01) among seven
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Figure 1. Variation of morphological traits and malondialdehyde (MDA) content across the grafted tomato population. a Each dot in the box plot
represents the mean of the fold change of each tomato for the respective parameters over self-grafted M82 (SG-M82), followed by log2 transformation
(n = 3–4). The line across each box shows the median of each dataset. The notch of each boxplot indicates the 95% confidence interval of dataset. b The
histogram shows the data distribution of tomato populations of each parameter. The bin colored with gold indicates where the SG-M82 is located.
FFW, fruit fresh weight; PFW, plant fresh weight; TFW, total fresh weight; FFW/TFW, the ratio of fruit fresh weight to total fresh weight. FDW, fruit dry
weight; PDW, plant dry weight; TDW, total dry weight; HI, harvest index; FAW, fruit average weight; PH, plant height; BN, branch number; MIL, mean
internode length; MDA, malondialdehyde.

morphological traits including FFW, FDW, PFW, PDW, TFW,
TDW, and FN (Fig. 2). The strong correlation (r = 0.92,
p < 0.01) between TFW and FFW resulted in relatively
stable FFW/TFW across the entire population, as indi-
cated by the lowest CV value for FFW/TFW (CV = 0.07;
Fig. S2). The significant correlation between TDW and
FDW (r = 0.89, p < 0.01) corroborated the stability of
HI across the population with a considerably low CV
(CV = 0.11, Fig. S2). HI correlated with FDW (r = 0.64,
p < 0.01); however, it was only weakly correlated with
TDW (r = 0.27, p < 0.01), consistent with previous findings
[51, 52]. In addition, PFW was significantly correlated with
FFW (r = 0.82, p < 0.01) across the population. Within each
rootstock origin, the correlations between PFW and FFW
remained strong (0.72 < r < 0.93, p < 0.001, Fig. S4). The
consistent correlation between PFW and FFW among
grafts of different rootstock origin suggests an intrinsic
trait of M82 of productive efficiency, showing a trend that
the bigger the final “plant size” (PFW), the higher the “fruit
yield” (FFW). However, the productive ability differed
between wild and domesticated rootstocks as the grafts
with wild rootstocks displayed significantly lower PFW
and FFW. In addition, the grafts with rootstocks from wild
accessions drove a shift (p < 0.001) between the wild and
the domesticated rootstocks on PC1, explaining 37.7% of
total variation (Fig. S5a).

Metabolic perturbation caused by rootstock
diversity
In total, 54 metabolites were identified across 255 grafts
and classified into seven classes, including organic acids,
amino acids, sugars etc. (Fig. 3). To estimate variation
of metabolites across the grafted population, we cal-
culated the CV for each metabolite across the whole
population. Large variability in the level of metabolites
was observed across the whole population, showing a
range of CVs from 0.16 to 0.86 (Fig. 3). Of all metabolites,
the TCA intermediates, malate and citrate, varied greatly
across the population displaying the highest CVs of 0.86
and 0.72, respectively. However, quite a few metabolites
(28 of 54) were relatively stable across the population
with CVs < 0.3, considered a threshold value for low vari-
abilty [53]. Notably, “unknown 1” was the most resilient
metabolite, as indicated by the lowest CV (CV = 0.16).
Comparing the metabolic variations between different
groups of rootstocks, we additionally observed that the
metabolic variation of the SP group (CV = 0.335) was sub-
stantially higher than the SLL (CV = 0.292, p = 0.023) and
SLC groups (CV = 0.283, p = 0.016) (Fig. S6). Three metabo-
lites, citrate, malate, and aspartate with great variability,
were observed as outliers, in the SLL and SLC groups,
the two major transitions derived from the SP group in
tomato domestication history [54, 55].
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Figure 2. Correlation analysis of morphological traits and MDA content
across the whole grafted population. The numbers in the lower triangle
represent the correlation coefficient, of which the significant
correlations (q-value <0.01) are in bold and labeled with an asterisk.
FFW/TFW, the ratio of fruit fresh weight to total fresh weight.

The CV analysis measured the relative dispersion and
variability of each metabolite around the mean in the
population of tomato grafts. Using FCs, followed by log2

transformation (Fig. 3), it was observed that in 70% of
the grafts (n = 177) amino acids generally accumulated
to a greater extent in the graft population compared
to SG-M82, such as alanine, GABA, and proline etc. In
particular, proline accumulation was observed in 80% of
the grafts (203 of 254). A similar trend was also observed
for ethanolamine, which showed a relatively low CV, but
accumulated consistently in 245 grafts compared to SG-
M82. Additionally, we observed that some grafts were
statistically identified as outliers (positioned outside the
whisker of each box plot), which contributed to the high
CVs. By extracting the outliers for each metabolite, we
found that specific grafts frequently appeared as outliers
such as grafts 46, 51, and 54 (Fig. S7a) and were charac-
terized by a common metabolic signature consisting of
a group of six metabolites sorbose, galactose, sucrose,
fructose, myo-inositol, and proline (Fig. S7a), that have
been suggested as osmolytes against salt stress [56–58].
With regards to the effect of rootstock origins on leaf
metabolism, PCA revealed that grafts of the SP group
formed a cluster significantly (p < 0.05) distanced from
other groups with the exception of the wild group on PC1,
explaining 27.5% of the total variation (Fig. S5b).

Metabolic changes across the population are
associated with morphological heterogeneity
By calculating the variance as described in Equation 1,
dispersions of morphological traits, MDA, and metabo-
lites against SG-M82 were obtained (Fig. 4), and three

patterns of associations were observed. Cluster A, repre-
senting the dominant trend, typically showed relatively
low variance for morphological traits (0.11 ± 0.05, n = 8)
and high variance of associated metabolites (1.09 ± 0.06,
n = 8) (Fig. 4). In contrast, cluster B displayed higher
variance in morphological traits (0.45 ± 0.07, n = 6)
than metabolites (0.26 ± 0.02, n = 6). Cluster C, as the
third typical pattern, displayed quite small variance in
morphological traits (0.18 ± 0.03, n = 15) and metabolites
(0.20 ± 0.03, n = 15), indicating a homogenous response to
the saline condition.

Next, Pearson’s correlation analysis was performed,
visualized as a heatmap, to calculate metabolite-
metabolite correlations and metabolite-morphology
correlations (Fig. 5). A total of 340 positive and 64 neg-
ative correlations between metabolites (q-value <0.05 in
Fig. S8, labeled with an asterisk in Fig. 5). The analysis
emphasized a cluster including TCA cycle intermediates
(citrate, malate), amino acids (pyroglutamate, aspartate,
and glutamate), and phosphates (glycerol-3-phosphate,
fructose-6-phosphate, and glucose-6-phosphate), with
an r-value range of 0.32 to 0.93. Next to this cluster
we observed a cluster of the most pronounced negative
correlations between the abovementioned metabolites
and a set of metabolites consisting of threitol, 1,6-
anhydro-β-glucose, caffeate, and “unknown 1 and 2”.
Another pattern of significant correlations was observed
between the nine metabolites mentioned above and
proline, gluconate, and phenylalanine. A small noticeable
cluster of positive correlations comprised myo-inositol,
proline, and sugars galactose, fructose, sucrose, and
sorbose.

With a significance threshold at p < 0.05 and |r| > 0.30,
correlation analysis between morphological traits and
metabolites across the whole population highlighted
the relationship between four yield-associated traits
(FFW/TFW, FFW, FDW, and HI) and six metabolites
(glycerol-3-phosphate, caffeate, threonate, shikimate,
valine, and erythronate) (Fig. 5). The metabolites can be
divided into two groups according to their correlations
with the yield-associated traits. The first group, including
caffeate, threonate, and erythronate, was positively
correlated with yield-associated traits by different
degrees. For instance, erythronate was associated with
all four traits. However, caffeate only correlated with
FFW. In the second group, consisting of glycerol-3-
phosphate, shikimate, and valine, all the metabolites
showed negative correlations with FFW/TFW. Among
the four traits significantly correlated with metabolites,
FFW/TFW displayed the most connections with all the
metabolites except caffeate. In contrast, FDW was only
significantly correlated with erythronate.

Identifying putative predictive metabolic markers
for yield-related traits
To capture the predictive power of a metabolite towards
yield-associated traits, we used the LASSO method
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Figure 3. Metabolic response of scion to different rootstocks under saline conditions. Heatmap (middle), with a color gradient, shows the log2

fold-change (log2 FC) relative to the respective metabolites in self-grafted M82 under the saline conditions. The boxplot (left) was created based on the
log2 FC, and the coefficient of variation (right) was calculated as the standard deviation/average based on the fold-change across the population
(n = 3–4). Unknown 1: experimental RI = 1876; Unknow 2: experimental RI = 2024; Unknown 3: experimental RI = 2094.

(Fig. 6). By performing LASSO with multiple 10-fold cross-
validations, the average predictabilities of each 10-fold
cross-validation were exceptionally preserved across the
entire prediction process, suggesting a homogeneous
distribution for sample partition and the reliability
for variable selection (Fig. S9, Table S4). FFW/TFW was
regarded as the trait with the highest predictability,
displaying average predictability of 0.68 (Fig. 6), followed
by the predictability of HI (0.51) and FFW (0.49). FDW
was the trait with the lowest predictability (0.29, Figs. S10
and S11).

Instead of using all metabolites, LASSO performed
variable selection to improve predicting accuracy [59].
This enabled us to investigate the groups of metabo-
lites contributing to the prediction of each trait. LASSO
selected a set of “important” metabolites, from the 54
annotated metabolites, in each prediction for each trait,
forming a list of frequently selected metabolites from
100 predictions (Table S4). Metabolites with stronger pre-
dictive values are more likely to be selected in each
prediction test. In the merged list of frequently selected
metabolites from the prediction of four traits, the most

predominant metabolite groups were organic acids such
as citrate, shikimate, and quinate, and amino acids such
as glutamate, glycine, and leucine, accounting for 50%
and 25% of the frequently selected metabolites, respec-
tively. Among the frequently selected metabolites, glu-
conate and shikimate were observed to predict FFW,
FFW/TFW, and HI with a frequency of at least 99 times
(Table 1, Fig. 7). In addition, three, five, and two metabo-
lites were specifically frequently selected for the predic-
tion of FFW, FFW/TFW, and HI, respectively (Fig. 7).

Discussion
Grafting exposes a broad spectrum of changes in
morphological traits and MDA content under
saline conditions
A population of grafted tomato plants was generated
in which the unitary shoot from commercial variety
M82 (Solanum lycopersicum) was grafted onto rootstocks
of 254 accessions, representing various groups across
the domestication history of tomato, consisting of wild
species (Wild), Solanum pimpinellifolium (SP), Solanum
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Figure 4. The variance of morphologies (including MDA) and
metabolites of each graft relative to self-grafted M82. Abbreviations
represent rootstock origin: SLC, Solanum lycopersicum var. cerasiforme; SL,
Solanum lycopersicum; SP, Solanum pimpinellifolium; Wild, wild species;
Other, accessions in processing.

lycopersicum var. cerasiforme (SLC), S. lycopersicum L. var.
lycopersicum (SLL), and few other accessions (Other).
Among the different grafts, the genetic background of
the rootstocks used is the sole factor influencing M82
scion growth and development under saline conditions.

Following 34 days of growth, phenotypic diversification
was evident. The oxidative stress marker MDA exhibited
the highest variability (CV = 0.58), while FFW/TFW was
the most conserved trait in the collection. FFW/TFW and
HI, which represent the ability of a plant to allocate
assimilated photosynthates to the harvestable product
[60, 61], were inherently resilient and strongly dependent
on the M82 scion. The significant correlation between
FFW and PFW suggests that the bigger the plant (higher
PFW), the greater the fruit yield (FFW). Our results also
suggest intrinsically robust productivity of M82, irrespec-
tive of rootstock origin. Based on this notion, it can be

expected that vigorous rootstocks are likely to improve
the FFW of grafted plants [62].

The phenotypic heterogeneity mediated by rootstocks
has only been fragmentarily documented in grafted
tomatoes under standard growth conditions [63] and
non-optimal environments [30, 64, 65]. Mauro et al.
reported the contributions of rootstock origins to scion
growth [66]. The grafts with a rootstock of Solanum
habrochaites- and S. pimpinellifolium-derived hybrids
showed a reduction in fruit biomass, but two hybrids
had opposite effects on plant biomass under optimal
conditions. Our study shows that rootstock-mediated
phenotypic diversification is expressed differently across
the measured morphological traits under non-optimal
conditions of growth (Fig. 1).

Although different domesticated transitions were
tested, similar dispersion on PCA plots was noticed
between the relatively close transitions SLL, SLC, and
SP, when the analysis was built using morphological
traits (Fig. S5a). In contrast, the grafts with wild species
as rootstocks showed a significant impact on the
dispersion across PC1. These results indicate that human
selection led to a relatively homogeneous adaptive trait
to suboptimal growth conditions [67, 68].

Metabolic variation suggests a shift in carbon
allocation towards stress metabolism across the
graft population
Metabolite profiling across the collection suggests that
the differences between grafts were only marginally
affected by rootstock origin (Fig. S4b). That said, metabo-
lites displaying a significant response comprised the
major organic acids, citrate, malate, and the amino acid,
aspartate, particularly in SLL and SLC groups rather than
in SP group. Considering the domestication history of SP,
SLL, and SP groups [54, 55, 69], our results suggest that the
domestication process likely boosted the performance of
modern tomato cultivars by modulating central energy-
associated metabolites. Across the profile, the relative
content of malate, citrate, and fumarate changed in
association with individual rootstocks (Figs. 3 and 5),
potentially indicating that under non-optimal growth
conditions, rootstocks can mediate central pathways
in carbon metabolism [70]. Sub-optimal conditions
can cause a reduction in plant assimilation as well as
an increase in the energy cost of stress defense [71],
leading to reduced plant growth rate due to greater
respiration for the plant maintenance [72, 73]. Contrary
to expectations, no strong (|r| > 0.3) or significant cor-
relation (q < 0.05) were obtained between traits related
to plant growth and energy-related metabolites (Fig. 5),
suggesting an indirect link between central carbon
metabolism and plant growth. Carbohydrates are highly
associated with source-to-sink carbon partitioning in
tomato [74]. That said, energy metabolism is balanced
via the regulation of the TCA cycle in mitochondria
[75] and by replenishment of TCA intermediates from
amino acids [76]. Our analysis revealed the accumulation

D
ow

nloaded from
 https://academ

ic.oup.com
/hr/article/doi/10.1093/hr/uhac061/6548274 by guest on 16 August 2022

https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac061#supplementary-data
https://academic.oup.com/hortresjournal/article-lookup/doi/10.1093/hortresjournal/uhac061#supplementary-data


Song et al. | 7

Figure 5. The complex correlation matrix of metabolite-metabolite and metabolite-morphology across the population using Pearson’s algorithm. The
mean of fold-changes of biological replicates (n = 3–4), compared to SG-M82, was log2-transformed and used to construct the complex correlation
matrix, consisting of metabolite-metabolite (heatmap) and metabolite-morphology (lower links). Asterisks inside the heatmap indicate q-value <0.05.
The links filtered at a threshold of q-value <0.05 and |r| > 0.3 show the correlations between metabolites and morphological traits. The width of the
edges indicates the discrete Pearson’s r, and the red and green colors indicate positive and negative correlations, respectively. FFW/TFW, the ratio of
fruit fresh weight to total fresh weight. Unknown 1: experimental RI = 1876; Unknow 2: experimental RI = 2024; Unknown 3: experimental RI = 2094.

of amino acids in most of the grafts (177 out of 254)
compared with SG-M82 (Fig. 2). For instance, among
these amino acids, the metabolism of GABA plays an
essential role in nitrogen and carbon metabolism under
stressed conditions [77, 78].

Plants under salt stress can accumulate compatible
osmolytes such as proline, sucrose, and myo-inositol in
the cytoplasm to maintain osmotic potential when Na+

is sequestered in the vacuole to avoid the deleterious
effects of Na+ and Cl− on metabolic process [56, 79, 80].
The accumulation of osmolytes may be the consequence
of the shift of energy consumption into stress defense
[81]. We observed a noticeable cluster of positive
correlations among osmolytes including myo-inositol,
proline, and the sugars galactose, fructose, sucrose, and
sorbose (Fig. 5), indicative of the coordinating role of
these metabolites under saline conditions, and showing
that this response is generally conserved between grafts.
The six osmolytes were also significantly correlated
with metabolites such as glycerol-3-phosphate, fructose-
6-phosphate, and glucose-6-phosphate (Fig. 3), which
have a role in energy supply and osmotic adjustment

[79, 82]. For example, it has been documented that
the enhancement in salt tolerance of tomato plants is
linked to the overexpression of the chloroplast glycerol-
3-phosphate acyltransferase gene (LeGPAT) [83].

Correlation analysis highlights the relation
between yield-associated traits and leaf central
metabolism
Using the 54 annotated metabolites and 14 morpholog-
ical traits (including MDA content) in scions across the
graft population, we calculated the overall variance, cor-
relation distribution, and implemented model prediction
to reveal associations between metabolites and morpho-
logical traits. The variance-based analysis indicated the
existence of three major groups of grafts (Fig. 4) differing
in modulation of their traits. For instance, cluster A
showed relatively low variance for morphological traits
while displaying high variance of associated metabo-
lites. These data suggest that the plant phenotypes were
robustly maintained by extensive alteration of central
metabolism.
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Figure 6. The effectiveness of predictability in metabolic prediction of
the four yield-associated traits using the LASSO. a Fruit fresh weight
(FFW); b Fruit dry weight (FDW); c The ratio of fruit fresh weight to total
fresh weight (FFW/TFW); d Harvest index (HI). Each open circle
represents one single prediction. The shaded circle indicates
insignificant predictability (p > 0.05). The red dashed line indicates the
location of the p-value = 0.05. The mean shows the average predictability
of 100 predictions for each trait.

The correlation analysis identified significant relations
between four yield-associated traits and six metabo-
lites (|r| >0.3, q < 0.05, Fig. 3). These are relatively sparse
relations compared to earlier analysis on interspecific
tomato introgression lines [43] and might reflect a more
complex effect of rootstocks on scion growth. Specifically,
among the six metabolites, glycerol-3-phosphate is asso-
ciated with energy supply related to salt stress [82, 83],
threonate is the end-product of ascorbate degradation
[84, 85], and caffeate has been linked with different stress
responses due to its role in the basic metabolic pro-
cess of lignin synthesis [86]. Among the yield-associated
traits, FFW/TFW and HI, which represent the efficiency of
partitioning of assimilated photosynthate to harvestable
product, showed no link with central energy metabolites
(Fig. 3). In common with findings from Schauer et al.
[43], the metabolites that correlated strongly with yield-
associated traits seem to be more stable across the pop-
ulation, showing relatively low CVs (Figs. 3, S2).

Leaf metabolites are associated with FFW/TFW,
HI, and FFW with predictive potential
The association between plant phenotype and metab-
olism is complex due to the intricate system(s) of dif-
ferent regulatory levels [87]. Various prediction mod-
els, addressing the non-linear relationship between trait
expressions and predictors [88–90], have been used in
an effort to link phenotypes in different species, such

as rice [91], cotton [92], maize [93], and wheat [94]. Most
reports have examined the relationship between plant
traits and “omics” data of populations grown under opti-
mal conditions [45, 95, 96]. The LASSO method, combin-
ing both shrinkage and variable selection methods [90],
was shown to be quite efficient in metabolic prediction
of yield traits [45]. Here, we investigated the association
between scion growth features and leaf metabolomics
data using the LASSO method based on the results of
our correlation analysis. The model yielded effective pre-
dictions for FFW/TFW (r = 0.68), HI (r = 0.51), and FFW
(r = 0.49) (Fig. 6), validated by a permutation test at empir-
ical p < 0.05 (Fig. S10), revealing the great importance of
metabolites for predicting traits.

Usually, model prediction has been performed on a col-
lection consisting of subpopulations, for instance, from
different species [93], generations [88], and years [97].
However, the accuracy and efficiency of predictions can
be affected by the genetic distance in populations [98,
99]. In the present study, PCA plots showed an admixture
of grafts from different rootstock origins on phenotypes
and metabolites (Fig. S5) and avoided the effect of sub-
population structures in model prediction. Besides the
effect of population structure, the sample partitioning in
the datasets for model training and testing plays a vital
role in prediction [88]. 10-fold cross-validation was widely
used in genomic selection for evaluating the ability and
efficiency of the prediction model [90]. The typical 10-
fold cross-validation was applied ten times to partition
the population for model training and testing and exhib-
ited plateaued predictabilities of FFW/TFW, HI, and FFW,
indicating high prediction accuracy (Fig. S9).

The concern exists for the practical application of the
metabolite contributed prediction of phenotypic traits, as
these profiles capture a snapshot of the highly dynamic
plant metabolism system(s) that change substantially
over time and conditions [100]. The highly predictive
model for the traits based on the metabolite profiles
from a specific time point may not be applicable for pre-
dicting traits over different time points of plant growth
[46]. Here, we performed metabolite profiling on leaflet
samples from all grafts at the same development stage
and under the same conditions of growth to address
the indirect links between morphologies and metabolites.
Our findings may be implemented with samples from
different time points of plant growth to gain a broader
knowledge of metabolite-mediated scion performance in
future study.

Moreover, instead of using unknown metabolic fea-
tures as predictors [45, 101], we used 54 annotated
metabolites, which greatly facilitated understanding
of the metabolic contribution to trait expression.
Metabolites, as intermediates and end-products of
biochemical pathways, can have close connections with
phenotypes [43, 102]. Correlation analysis between the
levels of metabolites and phenotypes has been used
to estimate the conceivable function of a metabolite
in the modulation of a phenotype [103, 104]. However,
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Table 1. The summary of frequently selected metabolites (frequency ≥ 95) in the metabolic prediction of yield-associated traits. The
result for fruit dry weight is shaded due to its ineffective prediction. FFW, fruit fresh weight; FDW, fruit dry weight; FFW/TFW, the ratio
of fruit fresh weight to total fresh weight; HI, harvest index

Class Metabolite FFW FDW FFW/TFW HI

Amino acid

Glutamate 100 - - 98
Glycine - - 100 -
Leucine - - 100 -
Proline 100 - - -
Threonine - - - 97
Valine - - 100 100

Organic acid

Citrate - - - 100
Shikimate 100 96 100 100
Quinate - - 100 100
Ribonate 97 - 100 -
Saccharate 96 - 97 -
Caffeate - 96 98 100
Gluconate 100 - 100 99
Erythronate 100 100 - -
Threonate 100 - - 100
Maleate - - 95 -
Trans-3-O-caffeoyl-D-quinate 99 - 97 -
Trans-5-O-caffeoyl-D-quinate - 95 99 100

Sugar Arabinose 98 - - -

Phosphate Glycerol-3-phosphate - - 98 -

Amine 5-hydroxytryptamine - - 100 100

Polyol Threitol - - 100 -

Other
Unknown 1∗ - - 100 100
Unknown 3∗ - - 100 100

∗Unknown 1: experimental RI = 1876; Unknown 3: experimental RI = 2094.

Figure 7. The Venn diagram of the overlap of frequently selected metabolites (n ≥ 95) between the predictions of fruit fresh weight, harvest index, and
FFW/TFW (the ratio of fruit fresh weight to total fresh weight). Unknown 1: experimental RI = 1876; Unknown 3: experimental RI = 2094.

it is assumed that a single metabolite generally exerts
only a moderate or no impact on trait expression [89].
Either in metabolic or genetic prediction, the LASSO
method enables metabolites to be identified with high
predictive potential [45]; For example, four out of
five metabolites displaying significant correlation with

FFW/TFW were frequently selected (frequency ≥ 90) in
prediction, including glycerol-3-phosphate, shikimate,
valine, and threonate (Fig. 5, Table S4). However, the list
of frequently selected metabolites in the prediction of
HI only comprised threonate (frequency = 90), though
threonate significantly correlated with erythronate
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(Fig. 5). This may be explained by that LASSO may select
the predictor with powerful complementary information
[59]. The predictor selection via LASSO model showed
the applicability of predicting yield-associated traits
using leaf metabolic profiling data, as evidenced by the
overlaps of the frequently selected metabolites between
traits (Fig. 7). Especially, the frequently selected metabo-
lites, suggest their pivotal role in the modulation of the
corresponding trait. For instance, the TCA intermediate
citrate, specifically for HI, may indicate its central role
in the carbohydrate partitioning in plant between the
vegetative and the reproductive organs, as described
above.

In conclusion, we have shown the phenotypic diversity
of scion and metabolic perturbation in leaves, which
were both modulated by rootstocks in response to saline
conditions. We found highly responsive trait (MDA) and
intrinsic traits (FFW/TFW and HI) of M82 across the graft
population. Leaf metabolites malate, citrate, and aspar-
tate showed to be central in the response to salinity and
in the rootstock-mediated energy repartitioning between
plant growth and stress defense. The indirect connec-
tions between morphology traits and metabolite content
were complemented and expanded with a predictive
model LASSO, which emphasized the role of metabolites
in phenotype modulation. Future studies should tackle
the regulatory mechanisms underlying these associa-
tions. Our results could provide new insights for further
research in grafting biology in relation to abiotic stress
and set the basis for metabolic marker assisted selection
of rootstock mediated tolerance to salinity.

Materials and methods
Plant materials
A total of 254 tomato accessions were collected (Table S1)
including 45 accessions of S. pimpinellifolium L. (SP), 36 S.
lycopersicum var. cerasiforme (SLC), 122 S. lycopersicum L.
var. lycopersicum (SLL), 34 accessions which are still in
processing (Other), and 17 accessions of wild species
(Wild) including Solanum chmielewskii, S. habrochaties, S.
huavlasense, S. peruvianum, S. corneliomuelleri, and Solanum
neorickii. The shoot of commercial S. lycopersicum cv. M82
was used as a scion and grafted onto the rootstocks of
the 254 accessions. The self-grafted M82 (SG-M82) was
used as the reference for comparison with other grafts.
For grafting, 30 day-old tomato seedlings were used to
establish tomato grafts; in total 980 grafted plants con-
sisting of 3 to 4 biological samples for each accession.

Experimental setup
The experiment was conducted in August–October
2017 in a plastic net house, located on the Sede Boqer
campus of Ben-Gurion University, Israel (30◦52′08.04′′N,
34◦47′33′′E, altitude 480 m). Twenty days after grafting,
plants were transplanted into 10-L growth pots with
washed sand. Following an 18-day adaptation period, all
plants were subjected to irrigation with a saline solution

(200 mM NaCl +0.5 g/L commercial fertilizer solution),
yielding a final EC of 20 dS m−1. NaCl concentration
was gradually increased from 0 to 200 mM over a 9-
day period to avoid osmotic shock (measured salinity in
the irrigation solution was 50 mM on days 1–2, 100 mM
on days 3–4, 150 mM on days 5–8, and 200 mM on day
9). The amount of leachate was maintained at ∼20%
of the irrigation solution with the aim of avoiding salt
accumulation in the sand. In addition, every 7 days, pots
were washed using an automatic drip irrigation system
with a 2-L solution (200 mM NaCl +0.5 g/L fertilizer) to
avoid salt accumulation. On a regular basis, plants were
irrigated with a 0.5–1.5 L, adjusted to the developmental
stage, i.e. from vegetative to mature fruiting stage [105],
every morning (7:30 am, local time, GMT + 3) throughout
the experiment. The aboveground parts of the plants
were harvested 40 days after treatment application.

Morphological measurement
Thirteen morphological traits were measured on the
aboveground tissue (Table S2): plant height (PH, cm)
was determined from the ground to apex of main shoot;
branch number (BN) and fruit number (FN) were counted
for each plant; mean internode length (MIL, cm) was
calculated as PH/BN; fruit fresh weight (FFW, g plant−1)
was determined from the total weight of red and green
fruits; mean fruit weight (MFW, g fruit−1) was calculated
as FFW/FN; plant fresh weight (PFW, g plant−1) was
determined by weighing the aboveground vegetative
tissue without fruits; total fresh weight (TFW, g plant−1)
was calculated as the sum of FFW and PFW; fruit dry
weight (FDW, g plant−1) and plant dry weight (PDW, g
plant−1) were obtained by drying fruits and vegetative
tissue, respectively, until reaching constant weight; total
dry weight (TDW, g plant−1) was determined as the sum
of FDW and PDW; the ratio of fruit fresh weight to total
fresh weight (FFW/TFW) was calculated; harvest index
(HI) was calculated as FDW to TDW.

Estimation of malondialdehyde (MDA) in tomato
leaflets
Leaflets collected on day 35 were used for MDA estima-
tion as described previously [106] with some modifica-
tions. Briefly, tomato leaf tissue (40 mg) was homogenized
using a retch mill, pre-cooled with liquid nitrogen and
then resuspended in ice-cold extraction mixture (1:20,
mg FW: μL) followed by centrifugation at 8000 rpm for
10 min (Eppendorf, Germany). The extraction mixture
was composed of phosphate buffer saline (PBS), 0.1 mM
phenylmethanesulfonyl fluoride (PMSF), and 10% (w/v)
trichloroacetic acid. The supernatant was transferred to
a new 2-mL Eppendorf tube and mixed with one equiv-
alent volume of 0.8% (w/v) thiobarbituric acid (TBA).
After mixing vigorously, samples were heated at 90◦C
for 45 min, cooled, and centrifuged at 1000 rpm for
15 min (Eppendorf, Germany). Absorbances at 532 nm
and 600 nm were measured in an Epoch Microplate
Spectrophotometer (BioTek) using Gen5 2.05 software to
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calculate equivalent MDA content (nmol g−1 FW). To
avoid variation from different measurement periods, a
reference sample (SG-M82) was mixed, equally aliquoted,
and arranged into each batch of measurements. Thus,
the levels of MDA are presented as fold-change over SG-
M82 (Table S2).

Sample preparation for gas chromatography–
mass spectrometry (GC–MS) analysis
Sampling of the youngest fully-expanded leaflet for
GC–MS analysis was carried out on day 34 following
the recommended metabolite data reporting protocol
[107]. Leaflet samples were frozen in liquid nitrogen
and freeze-dried. Lyophilized leaflets were ground into
powder using a pre-cooled mixer mill (MM 400, Retsch,
Haan, Germany) with two steel beads at 25 Hz for
2 min. Metabolite extraction was performed with a
few modifications based on the previous research [108].
Briefly, 25 mg of tissue powder was extracted in 1.28 ml of
a pre-cooled extraction mixture containing chloroform:
methanol: water (2.5: 1: 1, v/v). The mixture was briefly
vortexed and incubated on an orbital shaker (Keison,
UK) at 25◦C at 1000 rpm for 10 min. The mixture was
sonicated at room temperature for 10 min and then
centrifuged at 20000 g for 10 min (Eppendorf, Germany).
The supernatant (900 μl) was transferred to a fresh 2-
mL Eppendorf tube, and 300 μl each of chloroform and
water were added. Phase separation was achieved by
centrifuging the mixture at 20000 g for 10 min. The
supernatant of each sample was collected and stored
at −80 before GC–MS analysis. 50 μl of supernatant from
each sample was pooled to generate a quality control
(QC) for data normalization.

Metabolite profiling
A GC–MS (7890B-5977B, Agilent, Santa Clara, CA) with a
setup as described previously [109] was used for the rel-
ative quantification of non-targeted metabolic features
in leaf samples. Metabolite annotation was validated
using a Mass-hunter Workstation 8.0 (Agilent Technolo-
gies, US) based on spectral searching supported by the
National Institute of Standards and Technology (NIST,
USA) against RI libraries from the Max Plank Institute for
Plant Physiology (Golm, Germany). To remove the batch
effect due to long-term GC–MS running, a freely available
normalization method, Systematic Error Removal using
Random Forest (SERRF) [110], was performed based on
the QC samples, which were run along with experimen-
tal samples. The final levels of detected metabolites,
referred to as relative content, were based on the peak
area of the selected mass, which was obtained and nor-
malized to the corresponding metabolite in QC sample
(Table S3).

Metabolomics-based prediction of yield-related
traits in the grafted population
The Least Absolute Shrinkage and Selection Operator
(LASSO) [111] implemented in the “glmnet” package [112]

was used for the metabolic prediction of morphological
traits. LASSO was applied using the metabolic data of
54 annotated metabolites to predict each of the four
yield-associated traits derived from the morphology-
metabolite correlation analysis. To evaluate the ability
of the model built by LASSO to predict data not used
to train the model, a 10-fold cross-validation scheme
was used (Fig. S1). For cross-validation, the population
of tomato grafts was randomly divided into ten subsets
with an approximate equal sample size. Metabolic and
morphological data of the nine sets were used for model
training, performing another 10-fold cross-validation to
obtain tuning parameters, and the metabolic data of
the remaining tomato grafts were applied to the trained
model to obtain the predicted value of the morphological
trait. Thus, the model testing was repeated ten times
so that each population set could be included. To
exclude partitioning dependence of the predictive test,
we repeated the 10-fold cross-validation ten times,
each randomly partitioning 255 accessions into ten new
subsets. The strength of predictability is given by the
correlation coefficient between the predicted and the
observed values of the morphological trait and the cor-
responding p-value. This resulted in 100 predictabilities
from 100 predictions for each trait. A permutation test
was performed to assess the statistical significance of
the observed predictability from the null distribution.
In the permutation, the shuffled morphological data
were assigned to the samples for prediction, repeated
100 times. The null distribution, formed from 10 000
permutation tests, consisting of 100-times permutation
tests for each prediction, was compared against the mean
of predictabilities to calculate an empirical p-value for
each trait, as suggested from previous research [113].

Data processing and statistical analysis
To evaluate the variation of morphologies and metabo-
lites across the grafted population, the fold-change (FC)
was calculated as the mean of biological replicates
of each graft divided by that of SG-M82 under the
same saline condition for each morphological trait and
metabolite.

For morphology-morphology, metabolite-metabolite,
and metabolite-morphology correlation analyses, log2-
transformed fold-changes (log2 FCs) of morphological
traits and metabolites were used. For correlation analysis
between tomato grafts, the mean values of morpholog-
ical traits and metabolic data were normalized to the
median of the population for each trait and metabo-
lite, followed by log2-transformation, respectively. All
correlation analyses were performed using the corr.test
function and “Pearson” algorithm provided in the “pysch”
package [114]. Visualization of the correlation matrix
was achieved using the corrplot function in the “corrplot”
package [115] using the Ward.D2 clustering method in
the hclust function built in the “factoextra” package [116].

A clustered heatmap with annotations was created
based on log2 FCs using the Heatmap function within
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the “Complexheatmap” package [117]. Principal compo-
nent analysis (PCA) was performed using SIMCA 14.1
(Umetrics, USA) and visualized using the “ggplot2” pack-
age [118]. The diagram was created using the online
tool “Venny” version 2.1.0 [119]. Statistical analysis was
performed using “R” platform version 3.6.3 [120] and
JMP®, version 13 (SAS Institute Inc., Cary, NC, 1989–2007).
The functions t.test, Wilcox.test, and multiple compar-
isons using Tukey’s HSD test were used in correspond-
ing comparisons between grafts according to the data
distribution.

Variance in probability theory and statistics, measures
the distance that a set of numbers is spread around
the average value. The log2 FC, relative to SG-M82, nor-
malized the distance of the values of different traits
(morphological and metabolic) from SG-M82. To measure
the dispersal of traits of each graft around the value of
SG-M82, we used the modified variance measure:

Var (X) = 1
n − 1

∑n

i=1

(
log2FCi − Con

)2 (1)

where:
Var(X) = Dispersal of traits or metabolites of graft X

around control.
log2FCi = log2-transformed fold changes relative to

SG-M82 for trait i or metabolite i.
Con = log2 FC of control, it is constant zero.
N = The number of morphological traits including MDA

or metabolites.
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